
GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 1

Guaranteed globally optimal continuous
reinforcement learning

Hildo Bijl

Abstract—Self-learning and adaptable autopilots have the po-
tential to prevent aircraft crashes. However, before they will be
applied, there must be guarantees that the resulting controllers
satisfy certain performance requirements, and these guarantees
have – at least for continuous reinforcement learning (RL) con-
trollers – not been provided. In fact, guaranteeing convergence
of continuous reinforcement learning (RL) algorithms has long
been an open problem. It has been accomplished for a few
special (often linear) cases. Also convergence proofs to locally
optimal policies have been established. But attempts to design an
algorithm with proven convergence to the globally optimal policy
for a general RL problem have been met with little success.

This article examines the issues behind guaranteeing con-
vergence of an RL algorithm to the optimal policy. It then
continues by presenting Interval Q-learning: a novel continuous
RL algorithm with guaranteed convergence to the optimal policy
for deterministic model-free RL problems with continuous value
functions. Next to a convergence proof, also bounds on the speed
at which this algorithm converges are given.

This algorithm is then applied to a practical application. This
experiment first of all shows that, for RL problems with a
large number of state/action parameters, large amounts of run-
time and memory space are required. However, the experiment
also shows that the algorithm indeed works as the theory
predicts, thus confirming that convergence to the optimal policy
is guaranteed. Finally, a look is given to how the algorithm can
be used to improve aircraft safety.

Index Terms—Reinforcement Learning, Interval Analysis, Self-
learning controllers, Proven convergence, Interval Q-learning

I. INTRODUCTION

A. Motivation

IN AVIATION it regularly occurs that an airplane encoun-
ters some unexpected phenomenon. For example, an engine

may fall off as occurred during the Bijlmer crash (El Al Flight
1862) in October 1992, see [1], the aircraft might fly too
slowly as was the case for the Buffalo crash (Colgan Air Flight
3407) in February 2009, see [2], or something as simple as a
pitot tube icing may occur, as happened with Air France Flight
447, see [3]. If something like this happens, the autopilot
realizes it has not been designed for the current situation and
gives the majority of the control of the aircraft back to the
pilots. However, often the pilots have an insufficient situational
awareness, and without the aid of the autopilot this regularly
results in a crash.

It is likely that an autopilot which can adapt to unexpected
events would have been able to prevent at least some of these
crashes. However, when using such an adaptive autopilot, it

Ir. H.J. Bijl is a PhD student at the Delft University of Technology, Delft,
The Netherlands (e-mail: h.j.bijl@tudelft.nl).

Manuscript received January 15, 2013.

is important to be sure that the autopilot will not make things
worse. Providing such performance guarantees has been the
subject of a lot of research, but this research has so far been
met with little success.

This is especially so in the field of the (self-learning)
Reinforcement Learning (RL) controllers, as explained in
[4] or [5]. In RL applications, an agent interacts with its
environment. At every time iteration, the agent has a state
and chooses an action. The environment subsequently puts
the agent in a new state and gives it a reward. The agent
then adjusts its behavior (its policy), with as ultimate goal to
maximize the (weighted) sum of all future rewards. It does
this by keeping track of a value function which estimates the
expected sum of all future rewards.

When the states and actions are discrete – that is, there
is a finite number of possible states and actions – then a
variety of RL algorithms can be applied. In model-based RL,
in which a model of the environment is known, value iteration
and policy iteration are popular methods. In model-free RL,
in which no model of the environment is available, commonly
used methods include Q-learning and SARSA. As long as all
possible state-action combinations are continually visited, all
these methods can be proven to converge to the optimal policy.
(See, for example, [4].)

However, for airplanes the states and actions are often
continuous. Expanding the above mentioned algorithms to the
continuous realm is not straightforward. Some kind of func-
tion approximation needs to be implemented. Very different
attempts at doing so have been made in [6]–[11]. Sometimes
these attempts have resulted in controllers with satisfactory
performance. However, in none of these cases has convergence
to the optimal policy been proven.

B. Issues in reinforcement learning

The issues in continuous RL have been investigated in [12]–
[14]. The main problem is that in continuous RL there are
infinitely many possible different states. To properly apply
any kind of RL algorithm, the value function thus needs
to be approximated by some kind of function approximator.
Furthermore, when updating the value function for a certain
state s, also the values of nearby states s′ need to be updated.
This is the cause of various problems.

First of all, divergence of the value function may occur.
When the value of nearby states s′ is not properly updated,
then the error in the value function may increase over time.
Secondly, in some learning algorithms, no convergence may
occur. In this case, the value function continues to vary over

GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 2

time. Finally, wrong convergence may take place: while the
value function has converged, the resulting policy is not opti-
mal. This can have several causes. The function approximator
of the value function may have gotten stuck in a local optimum
instead of a global optimum. Or alternatively, it may have
converged to the global optimum, but through its design and
constraints the function approximator was simply incapable of
sufficiently approximating the value function.

Literature has also shown many examples of continuous
RL controllers with convergence proofs. In [15] a continuous
RL controller has been applied to linear systems. For this
specific case, convergence has been proven. [16] describes
an algorithm whose parameters converge to a region, but not
necessarily to a fixed point. (And in fact, examples have been
shown in which the controller parameters do not converge,
but continue to vary within this region.) The articles [17]–
[20] focus on linear function approximators. For these function
approximators, several convergence proofs are derived. How-
ever, linear function approximators are evidently not capable
of accurately approximating any function. There are therefore
no guarantees that an accurate approximation of any value
function is found, nor can it be certain that the optimal policy
is derived.

The only article which the author managed to find which
had a convergence proof of a continuous RL algorithm with
nonlinear function approximators was [21]. This article has
shown for the first time that a version of policy iteration with
arbitrary differentiable function approximation is convergent
to a locally optimal policy. Though this is a powerful result,
there are two strong downsides. First of all, the algorithm is not
practically applicable. This is because the algorithm consists
of two loops and the inner loop (the policy evaluation) requires
an infinite amount of iterations before the outer loop (the
policy improvement) can even do a single iteration. Secondly,
the function approximators (through their gradient descent
methods) may have proven convergence to a local optimum,
but they do not have proven convergence to a global optimum.
Hence, it is still not certain whether the value function is
approximated with sufficient accuracy to obtain the optimal
policy.

Concluding, so far no continuous RL algorithm has been
devised with proven convergence to the globally optimal
policy. This article will explain why this has not been achieved
so far. It will continue by introducing the Interval Q-learning
algorithm – a novel continuous RL algorithm with guaranteed
convergence to the globally optimal policy. It then presents a
practically feasible adaptation of this algorithm.

C. Article overview

This article is set up as follows. Section II discusses
why previous attempts in reinforcement learning to prove
convergence to the (globally) optimal policy have met with
little success, and what would be required to prove such
convergence. Section III introduces the theoretical frame-
work of the Interval Q-learning algorithm and proves that
it converges to the optimal policy. It then also expands the
algorithm into a practically feasible version. In Section IV,

this algorithm is then applied to various practical problems,
giving an impression of its performance. Section V discusses
how Interval Q-learning can be used to improve aircraft safety.
Finally, section VI closes off with conclusions and a discussion
of the algorithm.

II. REQUIREMENTS ON A CONTINUOUS RL ALGORITHM

Consider any continuous RL problem. To solve it, an
accurate prediction of the value function for every state s
needs to be obtained. The problem here is that there is an
uncountable amount of different states and actions. In the
case that no information whatsoever can be derived on an
unvisited state s or an untried action a, it is not possible for
any algorithm to have guaranteed convergence to the optimal
value function.

To solve this, it is common to use a function approxima-
tor which aims to approximate the optimal value function.
Whenever a state s is adjusted, this approximation is updated
not only for the state s itself, but also for nearby states s′.
Literature has shown that this often results in a satisfactory
performance. But the main question here is: can convergence
to the optimal value function actually be assured?

As was mentioned in the introduction, many RL algorithms
from literature do not have guaranteed convergence. Given the
data from this paragraph, the reason now seems obvious. If it
is not possible (upon visiting state s and trying action a) to
derive data for nearby states s′ and/or nearby actions a′, then
convergence to the (globally) optimal value function cannot
be guaranteed whatsoever. The flip side of this argument is
that, should convergence to the optimal value function be
guaranteed, it needs to be possible in some way to derive
data about an unvisited state s′.

The way in which that is done in this article is through
the RL value slope assumption. This assumption states that
‘All derivatives (slopes) of the optimal value function Q∗

have known bounds.’ That is, for every state parameter si
and action parameter ai, the absolute values of the derivatives
∂Q∗/∂si and ∂Q∗/∂aj have known bounds bsi and baj ,
respectively. (Note that, if a value function V is used that
only depends on the state, then of course only derivatives
with respect to the state are used. However, this article focuses
on an adaptation of the Q-learning algorithm and hence uses
Q for the value function.) It is through this assumption that
guaranteed convergence to the optimal value function can be
obtained.

How exactly the above bounds bsi and baj
are established

is a very problem-specific question. It is therefore not further
discussed here. Instead, it is simply assumed that such bounds
are known. However, as will be mentioned in section VI, the
Interval Q-learning algorithm will be able to detect when the
assumed bounds are incorrect.

III. THE INTERVAL Q-LEARNING ALGORITHM

A. The discrete Interval Q-learning algorithm

In this section a new algorithm called the Interval Q-learning
algorithm is presented. It is a combination of the Q-learning

GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 3

algorithm, as presented in [4], with Interval Analysis (IA),
described in [22].

The main idea is that for every state s and action a,
the optimal value Q∗ is not approximated by a number Q
anymore. Instead, it is enclosed by an interval Q. This interval
is initialized and updated such that the actual optimal value
Q∗ always falls within this interval. The lower bound of this
interval Q is denoted by Q while the upper bound is written
as Q.

To see how this algorithm works, first the discrete case is
examined. Suppose that, for every state s and action a, bounds
Q(s, a) and Q(s, a) are known. Now the RL agent is put into
a certain state sk from which it chooses an action ak. The
environment subsequently gives it a reward rk+1 and puts it
in the state sk+1. The bounds on the value function are then
updated through

Q(sk, ak)← Q(sk, ak) +

α
(
rk+1 + γmax

a
Q(sk+1, a)−Q(sk, ak)

)
, (1)

Q(sk, ak)← Q(sk, ak) +

α
(
rk+1 + γmax

a
Q(sk+1, a)−Q(sk, ak)

)
. (2)

Here, γ is the RL discount rate, defined in the RL problem,
and α ∈ (0, 1] is the learning rate. In Interval Q-learning, as
applied in this article, α is set to 1.

If the interval Q(s, a) contains the optimal value Q∗(s, a)
for all (s, a) prior to the update, then the above update laws
guarantee that the same will hold after the update. Further-
more, if the width of an interval is defined as w(Q) = Q−Q,
then it follows that

w(Q(sk, ak)) ≤ γmax
a

w(Q(sk+1, a)). (3)

Hence, if sk and ak are chosen such that Q(sk, ak) is
maximized, then the width of the interval during an update
is guaranteed to decrease by at least a factor γ.

This strategy of selecting the state and the action with
maximum interval width (i.e. maximum uncertainty) is called
the Max-width exploration strategy. It ensures that the widths
of all intervals converge to zero and hence that the value
function bounds converge to the optimal value function. Also,
through relation (3), bounds can be derived on how fast this
algorithm converges. Because of its usefulness, it is assumed
in the remainder of this article that the Max-width exploration
strategy is applied to select trial states and actions.

B. The continuous Interval Q-learning algorithm

The discrete Interval Q-learning can be extended to the
continuous domain by using the RL value slope assumption.
Again suppose that an agent in state sk chooses an action ak.
For brevity of notation, merge the vectors s and a into one
vector x. Through relations (1) and (2) the interval Q(sk, ak)
(or Q(xk)) can be updated. At the same time, thanks to the RL

value slope assumption, intervals for nearby states and action
x′ can be updated through

Q(x′) = Q(xk)−
D∑
i=1

bi |x′i − (xk)i| , (4)

Q(x′) = Q(xk) +

D∑
i=1

bi |x′i − (xk)i| , (5)

where D is the dimension of x. That is, it is the number of
state and action parameters together. D is also known as the
dimension of the problem. (Also note that the bound vector b
is the concatenation of the bound vectors bs and ba.)

Applying relation (4) results in adding (for one-dimensional
problems) a triangle or (for multi-dimensional problems) a
pyramid to the landscape of Q. Similarly, relation (5) adds an
inverted pyramid to Q. This idea can be seen in Figure 1. The
pyramids which are added with every update are called update
pyramids.

x

Q

)kx(Q

)kx(Q

)x(Q

)x(Q
kx

ibslope

Fig. 1. Visualization of a single one-dimensional update pyramid resulting
from an experiment at state/action combination xk . Update pyramids always
have the slope bi. Multiple updates will result in a ‘landscape’ of such
pyramids. Multi-dimensional problems of course also have multi-dimensional
pyramids.

C. Guaranteed convergence of the algorithm

To prove convergence of the continuous Interval Q-learning
algorithm, the volume between the lower and the upper bound
should be considered. This volume can be found through

V =

∫
X

w(Q(x)) dx, (6)

where the integration is performed over all possible values of
x. (Note that, though the states and actions are continuous,
it is assumed that every parameter xi takes its values from a
finite range Ri.)

Related to the volume is the average width of the Q-function

wav =
V

A
=

∫
X
w(Q(x)) dx∏D
i=1 w(Ri)

. (7)

Here, A is the (D-dimensional) area spanned by all ranges Ri.
Now consider an update. At every update, an additional

update pyramid causes the volume (and equivalently the av-
erage width) to decrease. Through applying relation (3), this

GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 4

reduction in average width can be bounded. In fact, it always
holds that

∆wav ≤ −
2

D + 1

(
1− γ

2

)D+1
wD+1

max∏D
i=1 biw(Ri)

. (8)

where wmax is the maximum width of the Q-function. (A
derivation of this bound can be found in [23].)

Through the above bound, also a bound can be given on
how fast wav decreases over time. First define the reference
width as

wr = D

√√√√D + 1

2

(
2

1− γ

)D+1 D∏
i=1

biw(Ri). (9)

This reference width is a problem-specific constant. The
average width after k iterations is now bounded by

(wav)k ≤
2wr

D

√
Dk +

(
2wr

w0

)D , (10)

where w0 is the initial (average) width of the value function
bounds. (Again, for a proof, see [23].) As k →∞, this relation
proves not only that wav goes to zero, but it also gives a bound
on how fast it does that. This bound proves to be very useful
when applying the algorithm to practical applications.

D. Making the algorithm practically feasible

Currently, the Interval Q-learning algorithm suffers from a
significant problem. At every iteration, when using relations
(1) and (2), the lower and the upper bounds of the interval
need to be maximized. How this is done depends on the data
structure used to store these bounds.

One option would be to store all update pyramids that
have been generated in the past. If n denotes the number
of iterations, then maximizing the lower bound can be done
in order O(n) time, which is usually practically feasible.
Maximizing the upper bound is a far more difficult problem
though, and is done in O(nD) time. This run-time order
means that the algorithm is certainly not practically applicable
whenever D > 2. (Possibly a more efficient algorithm for
maximizing the upper bound can be set up, but it is not
expected that this will solve the problem.)

Hence a different data structure needs to be used. The
approach that was chosen in this article leads to the varying-
block Interval Q-learning algorithm. The idea is to split up
the state/action space into blocks. For every parameter xi, the
range Ri is split up into nb sub-intervals. (Often nb = 3 is
used.) This means that the entire state/action space is split up
into nDb blocks. Every block then keeps track of linear bounds
of the optimal value function.

Now consider the process of updating these value function
bounds. During every iteration, an update pyramid is gener-
ated, according to relations (4) and (5). The bounds of every
block are then narrowed as much as possible towards this
update pyramid. (Narrowing here means adjusting the linear
bounds such that the volume between the bounds decreases
as much as possible.) The exact process of narrowing for a
one-dimensional problem is shown in Figure 2.

Having a fixed number of blocks will not allow the algo-
rithm to converge to the optimal value function though. In
fact, after some time there will be an update which does not
allow any of the blocks to narrow their bounds. In this case,
the block in which this update occurred needs to be split up
into another nDb sub-blocks. In this way, a tree structure of
blocks is created.

It must be noted that, in this new varying-block algorithm,
update pyramids aren’t always fully used. (This can also be
seen in Figure 2.) This means that the bound (10) doesn’t
necessarily hold anymore. However, through the block split-
ting strategy, it can be shown that always at least a fixed part of
the update pyramid is used. Hence, if the right side of relation
(8) is multiplied by an appropriate constant, then it still holds.
Subsequently, convergence to the optimal value function is
still guaranteed for the varying-block algorithm. In fact, when
there is a sufficient amount of sub-blocks, then the bounds
can approximate any function that satisfies the RL value slope
assumption.

Next to this, the resulting tree structure of blocks also
provides various other benefits. If the data structure is set up
well, the algorithm is able to maximize the upper and lower
bounds in a very efficient way. This maximization algorithm
runs in the worst case in order O(n) time, but in practice it
often runs with a run-time of order O(log(n)).

Blocks

The upper bound after an update

Blocks

The initial upper bound

Point whose

interval widens

Unupdated

block

Update
pyramid

Not the entire

update pyramid is used

)x(Q

)x(Q

)kx(Q

)kx(Q

Fig. 2. Visualization of how to narrow blocks towards an update pyramid.
This is always done so as to maximize the reduction of the volume between
the bounds. This may sometimes have interesting side-effects.

IV. EXPERIMENT RESULTS

The varying-block Interval Q-learning algorithm has been
implemented and run on the problem of controlling a simple
cart. The goal of the controller is to keep the cart position z
near zero. The reward function is therefore rk = −|zk|. The
input is the force F applied to the cart. The equation of motion
is

d2z

dt2
= F. (11)

This problem has two state parameters (z and dz/dt) and
one input (action) parameter F . It is thus a three-dimensional
problem.

The varying-block continuous Interval Q-learning algorithm
has been run for 104 iterations. On a normal home-computer,

GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 5

Value function bound width vs. iteration number

Iteration number [-]

V
al

u
e

fu
n
ct

io
n

b
o
u
n
d

w
id

th
[-

]

Average width bound

Maximum width
Average width

Minimum width

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

Fig. 3. Widths of the value function bounds during training of the simple
cart problem. The bounded average width is calculated through relation (10).

Value function bounds after 104 test cases

z [m]
dz
dt [m/s]

V
a
lu

e
fu

n
c
ti

o
n

b
o
u
n
d
s

[-
]

-1

0

1 -0.5
0

0.5

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Fig. 4. Plot of the value function bounds for the simple cart problem after
104 iterations. Q is plotted versus z and dz/dt with F = 0. The lower
surface indicates Q whereas the upper surface indicates Q.

this took several minutes. (The Java programming language
has been used.) Throughout these iterations, the average width
of the value function bounds has decreased. This can be seen
in Figure 3. This figure shows the way in which the average
width decreased. It also shows that the average width was
indeed well below its bound.

The value function bounds resulting from all 104 iterations
are shown in Figure 4. Though there was still some distance
between the lower and the upper bound, it is quite easy to
visualize what the actual optimal value function would have
looked like.

Since a decent value function had been established, it can
be expected that the resulting controller also had a reasonable
performance. And this indeed turned out to be the case. From
every initial state, the RL controller was able to bring the cart
near the zero position and keep it close to it. The controller
wasn’t able to bring the cart exactly on the zero position, but
further training would enable it do so as well.

Concluding, this experiment supports the theory and shows
that the algorithm indeed works.

V. APPLICATION TO AIRCRAFT

The question remains how the algorithm can be applied to
improve aircraft safety. It must be noted that this algorithm
cannot be applied to immediately derive a controller for any

unexpected event. The algorithm would be too slow for that.
And in addition, the algorithm also requires the ability to
experiment with all possible actions. In case of an emergency,
experimenting with all possible actions is simply not possible.

Instead, the strength of the Interval Q-learning algorithm lies
in its ability to derive an optimal policy by itself. Currently,
designing an autopilot includes the manual tuning of various
parameters. It requires time and effort from a human control
engineer. With the Interval Q-learning algorithm, that will no
longer be necessary. And this is the fact that enables the
construction of an adaptable controller.

The first step in the design of an adaptable controller is to
define dozens (if not more) of possible failure scenarios. For
each of these failure scenarios, an appropriate aircraft model
is made. Given the fact that defining a failure scenario is often
a matter of adjusting aircraft parameters, this shouldn’t be an
unmanageable amount of work. The second step is then to
let the Interval Q-learning algorithm come up with a suitable
controller for each of these failure scenarios. This will take
lots of computations, but through parallel processing this can
be done within a few months – a lot less time than the
average development time of an aircraft. All controllers are
subsequently stored in a big onboard database.

The actual operation of the autopilot is now displayed in
figure 5. During a flight, the autopilot continuously identifies
the aircraft model. (Several model identification schemes for
this are already available in the literature.) At every point in
time, the autopilot then compares this aircraft model with all
the models it has stored in its database and chooses the one
that’s closest. Subsequently, it uses the autopilot corresponding
to that model. For most situations, this will mean that the
nominal controller will be used. But when some kind of
failure occurs, the autopilot will automatically switch to the
corresponding controller, enabling the pilots to continue to
optimally control the aircraft.

An actual implementation of this control scheme has not
been made. Its effectiveness has therefore not been proven.
Testing the set-up of figure 5, including its effectiveness
against failure scenarios that have not been appropriately

Aircraft

System

Identi cation

Nominal

Engine
failure

Stuck
rudder

Wing
damage

Nominal

Engine
failure

Stuck
rudder

Wing
damage

Aircraft
models

Aircraft
autopilots

Model
selection

Adaptable autopilot

Fig. 5. Overview of the autopilot during its operation. The autopilot
continuously identifies the aircraft model and compares it with models from
its database. It selects the closest model and applies the autopilot created for
that model.

GUARANTEED GLOBALLY OPTIMAL CONTINUOUS REINFORCEMENT LEARNING 6

modelled, is hence left as a suggestion for future research.

VI. CONCLUSIONS AND DISCUSSION

This article has presented a novel continuous reinforcement
learning algorithm with guaranteed convergence to the op-
timal policy for deterministic model-free RL problems with
continuous value functions. Next to this, bounds are also
available on how quickly the algorithm converges. These
bounds have been established by applying the RL value slope
assumption. Application of the algorithm to actual experiments
has shown that these bounds hold and that the algorithm works
as predicted by the theory.

Now one may ask: what would happen if the RL value slope
assumption does not hold? That is, if for some state/action
combination x, the bound ∂Q∗/∂xi ≤ bi is violated? Or what
if the initial interval Q does not contain the optimal value
Q∗ for some point x? In this case, it can be shown that, at
some point during the algorithm execution, the upper bound
Q will drop below the lower bound Q. It’s easy to implement
a check for this in the algorithm. Hence, the algorithm can
detect whether the assumptions hold, and if they do not, a
warning is given. This warning adds to the integrity of the
algorithm.

Though the algorithm as presented in this article is working
well, there are still various ways in which it can be improved.
First of all, the bounds bi can be looked at more closely. It
follows from relation (10) that a big value of bi slows down
the algorithm. The algorithm can be expanded such that bi
is allowed to vary per region in the state/action space. This
would speed up algorithm convergence. Secondly, different
data structures to keep track of the value function bounds
Q can be examined. It is expected that there may be data
structures which make more efficient use of both run-time
and memory space. Especially for problems with a high
dimension D, this will be beneficial. Thirdly, the strategy
of when and how to split up blocks can be improved. By
doing this in a smart and efficient way, again the necessary
run-time and memory can be reduced. And fourthly, different
exploration strategies can be investigated. Though the max-
width exploration strategy is very effective, it does involve
maximizing w(Q) which is computationally intensive. Perhaps
an additional improvement can be made here as well.

It must also be noted that this algorithm only works for
deterministic systems. Whether it can be expanded for stochas-
tic systems as well would be a very interesting yet also very
challenging subject, which is left as a suggestion for a follow-
up project. And finally, another suggestion for a follow-up
project is to apply the Interval Q-learning algorithm to actual
airplane models and their potential failure scenarios (according
to figure 5) to see how well Interval Q-learning is suitable to
increase aircraft safety.

ACKNOWLEDGMENT

The author would like to thank dr.ir. E. van Kampen, dr. Q.P.
Chu and prof.dr.ir. J.A. Mulder for support and supervision
during the project that led to this article.

REFERENCES

[1] Raad voor de Luchtvaart (Netherlands Aviation Safety Board), “Aircraft
accident report 92-11 - el al flight 1862,” Ministerie van Verkeer en
Waterstaat, Tech. Rep., 1994.

[2] Aviation Safety Network. (2009) ASN Aircraft accident de
Havilland Canada DHC-8-402 Q400 N200WQ Buffalo Niagara
International Airport, NY (BUF). [Online]. Available: http://aviation-
safety.net/database/record.php?id=20090212-0

[3] BEA (Bureau d’Enquêtes et d’Analyses pour la sécuritéde
l’aviation civile). (2011, July) Third interim report on flight af
447. BEA. [Online]. Available: http://www.bea.aero/docspa/2009/f-
cp090601e3.en/pdf/f-cp090601e3.en.pdf

[4] R. S. Sutton and A. H. Barto, Reinforcement Learning. MIT Press,
1998.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[6] E. van Kampen, Q. P. Chu, and J. A. Mulder, “Continuous Adaptive
Critic Flight Control Aided with Approximated Plant Dynamics,” in
Proceedings of the AIAA Guidance, Navigation, and Control Conference
and Exhibit, Keystone, Colorado, no. AIAA-2006-6429. AIAA, Aug.
2006.

[7] J. Beitelspacher, J. Fager, G. Henriques, and A. McGovern, “Policy
gradient vs. value function approximation: A reinforcement learning
shootout,” School of Computer Science, University of Oklahoma, Tech.
Rep., 2006.

[8] M. Irodova and R. H. Sloan, “Reinforcement learning and function
approximation,” Proceedings of the Eighteenth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2005 -
Recent Advances in Artifical Intelligence, pp. 455–460, 2005.

[9] M. G. Lagoudakis, R. Parr, and L. Bartlett, “Least-squares policy
iteration,” Journal of Machine Learning Research, vol. 4, pp. 1107–
1149, 2003.

[10] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transac-
tions on Neural Networks, vol. 8, pp. 997–1007, 1997.

[11] Y. Zheng, S. Luo, and Z. Lv, “Control double inverted pendulum by
reinforcement learning with double cmac network,” in Proceedings of
the 18th International Conference on Pattern Recognition - Volume 04,
ser. ICPR ’06, 2006, pp. 639–642.

[12] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learn-
ing: Safely approximating the value function,” in Advances in Neural
Information Processing Systems 7, 1995, pp. 369–376.

[13] A. da Motta Salles Barreto and C. W. Anderson, “Restricted gradient-
descent algorithm for value-function approximation in reinforcement
learning,” Artificial Intelligence, vol. 172, no. 4-5, pp. 454–482, 2008.

[14] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Proceedings of the Fourth Connectionist
Models Summer School, 1993.

[15] S. J. Bradtke, “Reinforcement learning applied to linear quadratic
regulation,” in Advances in Neural Information Processing Systems 5,
[NIPS Conference], 1993, pp. 295–302.

[16] G. J. Gordon, “Reinforcement learning with function approximation
converges to a region,” in Advances in Neural Information Processing
Systems, 2001, pp. 1040–1046.

[17] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[18] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement
learning with function approximation,” in Proceedings of the 25th
international conference on Machine learning, ser. ICML ’08, 2008,
pp. 664–671.

[19] A. Merke and R. Schoknecht, “Convergence of synchronous reinforce-
ment learning with linear function approximation,” in Proceedings of the
twenty-first international conference on Machine learning, ser. ICML
’04, 2004, pp. 75–80.

[20] J. N. Tsitsiklis and B. van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, vol. 42, no. 5, pp. 674–690, 1997.

[21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
AT&T Labs, Tech. Rep., 1999.

[22] R. E. Moore, R. Baker Kearfott, and M. J. Cloud, Introduction to
Interval Analysis, 3rd ed. SIAM - Society for Industrial and Applied
Mathematics, Philadelphia, 2009.

[23] H. J. Bijl, “Guaranteed globally optimal continuous reinforcement
learning,” Master’s thesis, Delft University of Technology, 2012.
[Online]. Available: http://repository.tudelft.nl/

